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Quantum Properties of Odd Excited Negative
Binomial States of the Radiation Field
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The odd excited negative binomial states are introduced using the photon creation
operator by repeated application on negative binomial states. These states interpolate
between the odd displaced Fock states and the odd excited pure thermal states. In this
paper both squeezing phenomena (normal squeezing and amplitude squared squeezing)
are discussed. Besides discussion of the Glauber second-order correlation function,
investigations are carried out for the quasi-probability distribution functions (Wigner
function and Q-function). Finally the Pegg—Barnett phase probability distribution is
computed for these states.
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1. INTRODUCTION

The importance of nonclassical states in different branches of physics (in
particular quantum optics) hardly needs to be emphasized. Recently there has been
considerable interestin generating and producing new quantum states in addition to
the number state (Fock stata) and the coherent stafie). Most of these states are
intermediate field states, which interpolate between distinctive states, reducing to
them in certain variation of limits of the parameters involved. For example, Stoler
et al. (1995) introduced the binomial stdtg M), which is a linear combination
of M states with coefficients chosen such that the photon-counting probability
distribution is binomial with mean photon M. This state is intermediate between
the number state and the the coherent state. Also, we see that the negative binomial
state has the attractive feature that in limiting cases it corresponds to fields in
coherent and pure thermal states (Agarwal, 1992; Agarwal and Inguva, 1991; Joshi
and Lawande, 1991). Another example we could mention here is the logarithmic
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state, which has been investigated with regard to the nonclassical character of
radiation fields (Mahran and Obada, 1988; Simon and Satyanarayana, 1988). This
state is a special case of the negative binomial distribution with the teem®
removed (Kendall and Stuart, 1977). As another example, it would be interesting
to refer to the generalized geometric state, which represents the gradual behavior
of some quantum optical systems where the state of the radiation field changes
from the number statgn) to the (nonpure) chaotic state (Bateefi al., 1995;
Obadaet al., 1993). Furthermore, the even (odd) negative binomial states (Joshi
and Obada, 1997), interpolate between the even (odd) coherent states and the even
(odd) quasi-thermal states. Recently, the excited binomial states (EBS) and excited
negative binomial states (ENBS) (Wang and Fu, 2000) bridge between coherent
states and Fock states in one and excited thermal states in the other.

The aim in this paper is to introduce and study the odd excited negative bi-
nomial states (OENBS). Such state can be generated by repeated application of
the photon creation operator on the odd or even negative binomial states (NBS)
(Barnett, 1998; Fu and Sasaki, 1997a,b; Matsuo, 1990; Srinivasan and Lee, 1996;
Vourdas and Bishop, 1995). The characteristics of OENBS are studied in the fol-
lowing sequel: the nonclassical properties such as squeezing phenomena [normal
squeezing and amplitude squared squeezing (ASS)] and the Glauber second-order
correlation function are studied in Section 3. The quasi-probability distribution
functions (Wigner function and Q-function) are studied in Section 4. The phase
properties in the Pegg—Barnett formalism is considered in Section 5. Finally the
conclusions are summed up in Section 6.

2. THE NORMALIZED OENBS

The ENBS of the radiation field are introduce by repeated application of the
photon creation operator on NB%, M)~ as defined in Wang and Fu (2000) by
the following:

Ik, 7, M)~ = N~ (k, n, M)a™|n, M)~ (1)
= N"(k, 7, M) Y B(K)In + k) ©)
n=0
whereN~(k, n, M) is the normalization constant while the NBS is defined by,
S [(M+n-1 12
=3 ( )] ©)

and

_ 1/2
et = | (M- e L @
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is the photons amplitude of ENBS, whil® is the usual number state, the interval
of the parameten is 0<|n| <1, M is a nonnegative integer, while the boson
creationd’ and annihilatioré operators satisfyg], 4] = 1.

The construction of the OENBS is based on the definition of ENBS of Eq. (2),
such that the states + k) are always odd.

Therefore it can be rewritten as follows for two cases:

(i) evenk,i.e.,.k=2k;

12k, 7, M) = Ng Y B3 1(2ka)[2n + 2k + 1)~ (5a)
n=0
(i) oddk, i.e. k=2k,+1
12kz +1,m, M)g = N~ > BN (ko +1)2s+ 2k, + 1)~ (5b)
n=0

whereBM_, (2k;) and B} (2k; + 1) are given by Eq. (4). The normalization con-
stants of OENBS for even and olldreN; andN/~, which are given respectively
by

o0

INg| 2= D" Bl 2k (6a)
n=0

NG| =Bl @k + 1) (6b)
s=0

It is known that, the ENBS tends to the ECS if we take the limit 0 and
M — oo such thatM |2 = |«|2. In the other limiting condition, i.e; — 0, the
NBS reduce to the vacuum state and the ENBS reduce to the Fockks$tathen
M =1 the quasi-thermal states are produced (Joshi and Obada, 1997). We note
here that the Fock staté®), |1), ..., [k — 1) are removed from the space as well
as all the even number states.

In order to investigate the statistical characteristics of these states we calculate
the expectation values for various operators. The mean photon number is defined
as the expectation value of the number operaterata. It is easy to show that
the expression of mean photon numk@y, in the OENBS for even and oddis
given respectively by,

~ (2K, n, MIAI2Kks, 7, M)y = [NG [ 72 (20 + 2k + 1)

n=0
2
x| By 1(2Ka)| (7a)
“(2Kz+ 1,0, Mfj|2ke + 1,7, Mg = NS |72 (25 + 2k + 1)
s=0

x| BM (2K, + 1)|? (7b)
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Similarly we can calculate the expectation value for the opefetas follows,

(i) for evenk

(120 = [Ny |2 (20 + 2k + 17 BY (2ko)|® (8a)
n=0
(ii) for odd k
(Ao = [NgT|* D (25 + 2ke + 12| BY (2kz + 1) (8b)
s=0

Finally the expectation values of the powersaaire given by,
(i) for evenk
— A - —2
o{2ks, 1, MIA™|2ky, 0, M)y = [Ny | 7™ — [n]H)™
2 (M +2n—m)!(2n + 2Ky + 1)!

X
ety (M = D)l(2n + 1)i(20 — m + 1)!
(M + 2n)! 2(n—-m+1)
T —— 9a
™M+ 2n—my ! (%a)

(i) for oddk
ol2ka + 1,1, MIA™[2kz + 1,7, M)_ = [NS|*n™(2 — )™

2 (M +2s—m—1)!(2s + 2K; + 1)!
(M = 1)I(29)!(2s — m)!

s=[m/2]

X\/ (M+25-1)! a6 (o)

(M+25s—m-1)!

For the expectation values di)™, we take the complex conjugate of the above
equations. Itis clear that the expectation values of any odd power of the operators
aanda' vanish. These results will enable us to discuss different statistical aspects
of the states under investigation.

3. NONCLASSICAL EFFECTS

In this section we use the results obtained in the previous section to discuss
the squeezing phenomena as well as the autocorrelation function.



Quantum Properties of Odd Excited Negative Binomial States of the Radiation Field 553

3.1. Quadrature Squeezing

Squeezing is one of the mostimportant phenomena in quantum optics because
of its applications in various areas, e.g., in optics communication, gravitational
wave detection, quantum information theory, etc. (Braunstein and Kimble, 1998;
Hillery, 2000; Milburn and Braunstein, 1999; Ralph, 2000). Consequently the
analysis of squeezing phenomenon in quantum optical systems is an important
topic.

Here we analyse the quadrature squeezing for the OENBS. To do so, let us
define the quadrature operatdtsandY as follows,

~ 1 ~ 1
X1 = ﬁ(é +4a') and Y= ﬁ(é —af (10)
and their variances,
Var(Xy) = (X3) - (X1)? and Varf) = (¥7) - (Y1)? (11)

obey Heisenberg's uncertainty relation,
~ ~ 1
Var(xl)Var(Yl)Z (12)

If either Vqr(f(l) or Var(Y;) is less than 12, squeezing occurs. Thus, the variances
of X; andY; can be written as,

Var(So) = 5+ (@18) + @) ~ 287 or Varth) = 3 + (@'a) - @)
(13)

Using Egs. (7), (9), and (13) we can investigate the squeezing properties. From
Eq. (13) it is apparent that squeezing does not occur in the quadrfrs‘xiwmce
(&) =0.

Figure 1 depicts plots of (Y1) = Var(Y;) — 1/2 againsy for differentM and
k. As can be seen, the variance is insensitivéltavhen|y| is large enough, and
there also exists a critical point. Whenn > 5. squeezing exists, and the value
of ¢ increases ad/l increases. Ak increases, keepiniyl fixed the squeezing
parameter¥ (Y;) starts at higher values and the squeezing range becomes narrow,
as the value ofi; moves to higher values close to 1.

3.2. Amplitude Squared Squeezing (ASS)

Here we discuss another nonclassical effect, namely, the higher order squeez-
ing. This type of squeezing is known as amplitude squared squeezing (ASS) that
has been introduced by Hillery (1989). ASS arises in a natural way in a second-
harmonic generation. In order to examine whether or not the OENBS exhibit ASS
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Fig. 1. (a) Quadrature variance against the paramefer different values oM (k = 4);
(b) quadrature variance against the paramefer different values ok (M = 7).
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we introduce the following hermitian operators:
~ 1 ~ 1
Xp = E(:312 +4a?) and VY, = E(az —af?) (14)
then X, andY, obey the uncertainty relation,
- Aol .
(AXE)(AVZ) 1 [Xa, YD) 1® (15)
where the variance,
(AX2) = (X3) — (X2 and (AYZ) = (Y2) — (V»)?
The field is said to be in an amplitude-squared squeezing state if,
- - 1 . -
(AX3) or (AYZ)< 51Xz, YaD)l (16)
The squeezing conditions in (16) can be reduced to the following forms:
S = (@") +(@Pa%) — @) <0
or
S = (@") — @& < 0 (17)

Combining Egs. (8), (9), and (17) we can study the squeezing effects of OENBS.
Figure 2 is the plot of, against; for differentM andk. As seen in Fig. 2(a)

and (b) the ASS is sensitive td andk. When keepindvl constant and varyink,

we see that the states with higheshow stronger ASS than those with lower values

of k. However, squeezing appears after a certain valug &he same behavior

is exhibited when we fik and varyM. Stronger ASS can be observed for higher

values ofM.

3.3. Sub-Poissonian Behavior

We turn our attention now to the Glauber second-order zero-time autocorre-
lation functiong®(0) which is defined as,

@ (81283 () — (A)
O="GmE T
This quantity measures the deviation from the Poisson distribution that corresponds
to the coherent state with?(0)=1. If g@(0)< 1(>1), the field is called sub
(super)-Poissonian.

From Egs. (7), (9), and (18) we can calculaf®(0). Figure 3 shows a
plot of g®@(0) against; for different M andk. It can be seen that whatevier
or M in the OENBS, these states start sub-Poissoniam fe0 with the value
1—1/K, wherek’ is the first odd numbek, theng®(0) increases and becomes

(18)
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Fig. 2. (a) Amplitude-squared squeezing for different valuek @ = 3); (b) amplitude-squared
squeezing for different values & (k = 1).
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Fig. 3. (a) g®@ Parameter as a function gfor different values ok (M = 11); (b)g® parameter as
a function ofy for different values oM (k = 3); (c) g® Parameter as a function gffor different
ofk (M =7).
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Fig. 3. (Continued.)

super-Poissonian ag takes certain value depending &h andk as shown in
Fig. 3(a)—(c).

4. QUASI-PROBABILITY FUNCTIONS

In the following we shall examine the representation of OENBS by the
quasi-probability phase space distribution functions. All of these are related to
the density matrix, which provides a complete statistical description of the sys-
tem. There are three types of the quasi-probability functions: Wigner W-, Glauber
P-, and Husimi Q-functions. These functions could be used also to describe the
nonclassical effects of the system: for example one can employ the negative val-
ues of the W-function, the stretching of the Q-function and the high singular-
ities in the P-function as signatures of nonclassical effects. Furthermore, these
functions are now accessible to measurements (Leohardt, 1997). Here, we shall
consider only the W- and Q-functions. For finding the Wigner function in case
of OENBS we consider only the diagonal terms in its representation. We find
that,
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(i) For evenk

2, 2 o 2
W(a) = =~ N [7e 2" 3 B, 1(2k)| Lansansa (@) (192)
n=0

(i) For oddk

2 o0
W(e) = — [Ny [*e 3" 1B (ke + 1)PLasiza(4ie) - (19D)
s=0

wherex = x + iy andL, (2) represents the Laguerre polynomial of ordeefined
by,

(e
Li(2) = Z(— )m (20)

As it can be seen from the definition (19) the functitifc) takes negative values
fora=0.

On the other hand, the Q-function is positive definite at any point in the phase
space for any quantum state and can be written as,

Qler) = 7 a|plar) (21)

In order to find the Q-function, we shall use the definition for the coherent
state|a) in the form,

> o
jor) = exp(——|a|2) IZ NIk (22)
and the density matrix has the form,
(i) Forevenk
po = |2k, n, M)g (2K, 1, M|
(iiy For oddk
Po=12kz + 1,1, M)g 5(2ko + 1,1, M|
Thus the Q-function is found to have the following expressions,
(i) For evenk
N [*

(0]

Qol@) = e’ |cy 2 (23a)

where

(|Ol |)2n+2k1+1

Ci=>» BM (2k)—~t——
1 HZ;) ont1(2K1) Zhi D
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(i) For oddk

Qufey = 1Nl '_| &P |C, 2 (23b)

where

(|Ol |)23+2k2+l
(2s)!

In Fig. 4, the Wigner function of the OENBS is plotted by numerical calcula-
tion of Eq. (19) for different values d¥l, k, andn. It can be seen that the negative
part of the Wigner function is quite pronounced especially at the origin. When
n is small =0.1), M =5 and changing ok, we see that at=1, W(x) has
central peak with a crater-like structure around it, Fig. 4(a). Whstarts to take
values larger than before, see Fig. 4(b) and (c), the central peak is surrounded by
wobbling circles due to the contribution of higher excitations. The existence of the
oscillations associated with the negative quasi-probability values, is a signature of
the nonclassical state. However, the widths of the oscillations are much broader
as compared to Fig. 4(a). Numerical calculations show\ti\@t) is insensitive to
changes irM, However,W(«) is very sensitive to the choice &fandn.

= BY(2ke+1)
s=0

W(x.Y)

-0.2

-0.4
-0.5

Fig. 4. (a) Wigner function folM =5,k = 1, andy = 0.1; (b) wigner function for
M =5,k =4, andn = 0.1; (c) wigner function foM =5,k =2, andn = 0.6.
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W(x,Y)

W(x.y)

-0.2
-0.3
-0.4
-0.5

0.6

Fig. 4. (Continued.)

With respect toQ(«) for OENBS, it is plotted for different values d#l,

k, andn (see Fig. 5). Whem is small ¢ =0.1) the statg2, 0.1, M); of the Q-
function is insensitive to changeshh [compare Fig. 5(a) and (b)] where the state
|3) is the most effective state and its contribution is the mainly effective one. Also,
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Q,(xy)

Q, ()

Fig. 5. (a) Q-function forM = 5, k = 2, andn = 0.1; (b) Q-function for
M =11,k = 2, andp = 0.1; (c) Q-function forM =5,k = 0, andn = 0.9;
(d) Q-function forM =5,k =2, andn = 0.9.

we find the center-crater-like spreads out in the phase spacmeasases. When
n increasesi{=0.9) andM =5 more states come to affect the Q-function, which
means that its diameter increases as the number of states increases (see Fig. 5(c)

and (d). The shape of the function is sensitive to any change in éitber as
shown in Fig. 5.
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Fig. 5. (Continued.)

5. PHASE PROPERTIES

In fact, there are different techniques for phase description (Lynch, 1995;
Tanaset al, 1996) based on a Hermitian quantum phase operator or associated
with quasi-probability distribution functions in a phase space. Here we use the

formalism of Barnett and Pegg that is based on defining the hermitian phase oper-
ator in a finite dimensional phase space (Barnett and Pegg, 1986, 1989a,b). They
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defined in this space the phase operator as the projection operator on the particular
phase state multiplied by the corresponding value of the phase. The main idea
in their technique is to evaluate all expectation values of physical variables in a
finite-dimensional Hilbert space and then taking the limit to obtain the measured
guantities.

In this approach, in thes 1) dimensional subspace, one can choose the
following (s + 1) orthonormal phase states as bases,

16m) = J_ Z exp(ném)In) (24)
where|n) are the number states afid is given by,
2rm
Om=6+——; m=0,1,...,s 25
m o + s+ 1 (25)

the value of) is arbitrary, and is taken here to be zero.
The Hermitian phase operator is then defined by,

= 6ml6m) (6l (26)
m=0

which has the eigenstaf#,) as its eigenstate with the eigenvaliye The state of
the form,

b) = b,e"|n) (27)
n=0

is known as a partial phase state (Pegg and Barnett, 1988, 1989),hylaeecreal
and positive, ang is a phase.
The phase probability distribution for the partial phase state is given by,

P(0m) = 1(6m|b)|? (28)
Since the density of phase statedsH 1)/2r, then the limits — oo is taken and
the continuous-phase probability distribution is introduced by,
1
PO) = lim 2= (0nlb) P (29)
s—>o0 27T
We obtain from (27) and (29) the Pegg—Barnett phase probability distribution for
the partial coherent state (27) in the form,

P() = 1 <1+ 2 " biby cos[ - m)9]> —r<6<mw (30

n>m

In case of OENBS, the functioR(9) has the following form,

(i) Forevenk

PO = o (142 3 Db coslian—2me])  (31a)

2n+1>2m+1
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(i) For oddk

(31b)

)

142 )" bogbys cos[(Z — 25)6]
2s>2s

Sincebyny1 = BY 1 (2k;) andb,s = B (2k; + 1) are given from Eq. (4).

1
2

P(®)

In Fig. 6 we have plotted the phase distribution of OENBS given by (31)

against the parameteyr for different values ofM andk. From Fig. 6 one can

4.0

i
©

<
©

b
o

<
oi

(wo)d

0
-

e
]

|

!

4.0

35

3.0

25

2.0

(Wo)d

Q
=

1; (b) phase probability

5andk =

Fig. 6. (a) Phase probability d

=2.

9 andk

atM =



566 Salah, Darwish, and Obada

observe that, the distribution initially approaches the vali#rlasn — 0. This
means that in this limit the phase information is lost. Asncreases, we can
observe a central peak &t=0 and two lateral wings & — £ developing. In
fact, this behavior has been seen for odd binomial states (El-Qitaaly 1999).
Also we note that the peaks are stretching algraxis, and have maximum values
at 0< n < 1 due to the nature of photon distribution in the state.

6. CONCLUSION

Inthis paper we have investigated some quantum statistical properties of anew
guantum state. This state is called odd excited negative binomial state (this state
interpolates between the odd number state and the odd excited coherent state).
The squeezing properties have been studied in detail, and it is found that there
exist critical point for the parametey, for which the squeezing is exhibited as
1> nc. Glauber second-order correlation functigl?(0) has been discussed. The
distribution starts ap = 0 sub-Poissonian whatever the valuebfindk. Later as
n increases the distribution changes from sub-Poissonian to super-Poissonian. We
have also discussed the quasi-probability function W-function, and Q-function.
Nonclassical effects have been observed for careful choice of the parameters. A
negative value for the Wigner function is a signature for nonclassical effects of the
state. Also the shape of W- and Q-functions are very sensitive to any change in
eitherk or 5. Finally the phase distribution function in the sense of Pegg—Barnett
has been calculated and investigated. The phase distribution has one central peak
at6 =0 and two lateral wings a — 4+ for 0< 5 < 1. This behavior has been
exhibited for earlier studies.
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