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The odd excited negative binomial states are introduced using the photon creation
operator by repeated application on negative binomial states. These states interpolate
between the odd displaced Fock states and the odd excited pure thermal states. In this
paper both squeezing phenomena (normal squeezing and amplitude squared squeezing)
are discussed. Besides discussion of the Glauber second-order correlation function,
investigations are carried out for the quasi-probability distribution functions (Wigner
function and Q-function). Finally the Pegg–Barnett phase probability distribution is
computed for these states.
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1. INTRODUCTION

The importance of nonclassical states in different branches of physics (in
particular quantum optics) hardly needs to be emphasized. Recently there has been
considerable interest in generating and producing new quantum states in addition to
the number state (Fock state)|n〉 and the coherent state|α〉. Most of these states are
intermediate field states, which interpolate between distinctive states, reducing to
them in certain variation of limits of the parameters involved. For example, Stoler
et al. (1995) introduced the binomial state|η, M〉, which is a linear combination
of M states with coefficients chosen such that the photon-counting probability
distribution is binomial with mean photonη, M . This state is intermediate between
the number state and the the coherent state. Also, we see that the negative binomial
state has the attractive feature that in limiting cases it corresponds to fields in
coherent and pure thermal states (Agarwal, 1992; Agarwal and Inguva, 1991; Joshi
and Lawande, 1991). Another example we could mention here is the logarithmic
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state, which has been investigated with regard to the nonclassical character of
radiation fields (Mahran and Obada, 1988; Simon and Satyanarayana, 1988). This
state is a special case of the negative binomial distribution with the termsn= 0
removed (Kendall and Stuart, 1977). As another example, it would be interesting
to refer to the generalized geometric state, which represents the gradual behavior
of some quantum optical systems where the state of the radiation field changes
from the number state|n〉 to the (nonpure) chaotic state (Batarfiet al., 1995;
Obadaet al., 1993). Furthermore, the even (odd) negative binomial states (Joshi
and Obada, 1997), interpolate between the even (odd) coherent states and the even
(odd) quasi-thermal states. Recently, the excited binomial states (EBS) and excited
negative binomial states (ENBS) (Wang and Fu, 2000) bridge between coherent
states and Fock states in one and excited thermal states in the other.

The aim in this paper is to introduce and study the odd excited negative bi-
nomial states (OENBS). Such state can be generated by repeated application of
the photon creation operator on the odd or even negative binomial states (NBS)
(Barnett, 1998; Fu and Sasaki, 1997a,b; Matsuo, 1990; Srinivasan and Lee, 1996;
Vourdas and Bishop, 1995). The characteristics of OENBS are studied in the fol-
lowing sequel: the nonclassical properties such as squeezing phenomena [normal
squeezing and amplitude squared squeezing (ASS)] and the Glauber second-order
correlation function are studied in Section 3. The quasi-probability distribution
functions (Wigner function and Q-function) are studied in Section 4. The phase
properties in the Pegg–Barnett formalism is considered in Section 5. Finally the
conclusions are summed up in Section 6.

2. THE NORMALIZED OENBS

The ENBS of the radiation field are introduce by repeated application of the
photon creation operator on NBS|η, M〉− as defined in Wang and Fu (2000) by
the following:

|k, η, M〉− = N−(k, η, M)â†k|η, M〉− (1)

= N−(k, η, M)
∞∑

n=0

BM
n (k)|n+ k〉 (2)

whereN−(k, η, M) is the normalization constant while the NBS is defined by,

|η, M〉− =
∞∑

n=0

[(
M + n− 1

n

)
η2n(1− |η|2)M

]1/2

|n〉 (3)

and

BM
n (k) =

[(
M + n− 1

n

)
η2n(1− |η|2)M (n+ k)!

n!

]1/2

(4)
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is the photons amplitude of ENBS, while|n〉 is the usual number state, the interval
of the parameterη is 0≤ |η| ≤1, M is a nonnegative integer, while the boson
creationâ† and annihilation̂a operators satisfy [̂a, â†]= 1.

The construction of the OENBS is based on the definition of ENBS of Eq. (2),
such that the states|n+ k〉 are always odd.

Therefore it can be rewritten as follows for two cases:

(i) evenk, i.e.,k= 2k1

|2k1, η, M〉−o = N−o
∞∑

n=0

BM
2n+1(2k1)|2n+ 2k1+ 1〉− (5a)

(ii) odd k, i.e.,k= 2k2+ 1

|2k2+ 1, η, M〉−o = N ′−o
∞∑

n=0

BM
2s (2k2+ 1)|2s+ 2k2+ 1〉− (5b)

whereBM
2n+1(2k1) andBM

2s (2k2+ 1) are given by Eq. (4). The normalization con-
stants of OENBS for even and oddk areN−o andN ′−o , which are given respectively
by ∣∣N−o ∣∣−2 =

∞∑
n=0

∣∣BM
2n+1(2k1)

∣∣2 (6a)

∣∣N ′−o ∣∣−2 =
∞∑

s=0

∣∣BM
2s (2k2+ 1)

∣∣2 (6b)

It is known that, the ENBS tends to the ECS if we take the limitη→ 0 and
M→∞ such thatM |η|2= |α|2. In the other limiting condition, i.e.,η→ 0, the
NBS reduce to the vacuum state and the ENBS reduce to the Fock state|k〉. When
M = 1 the quasi-thermal states are produced (Joshi and Obada, 1997). We note
here that the Fock states|0〉, |1〉, . . . , |k− 1〉 are removed from the space as well
as all the even number states.

In order to investigate the statistical characteristics of these states we calculate
the expectation values for various operators. The mean photon number is defined
as the expectation value of the number operatorn̂= â†â. It is easy to show that
the expression of mean photon number〈n̂〉o in the OENBS for even and oddk is
given respectively by,

−〈2k1, η, M |η̂|2k1, η, M〉−o =
∣∣N−o ∣∣−2

∞∑
n=0

(2n+ 2k1+ 1)

×∣∣BM
2n+1(2k1)

∣∣2 (7a)
−〈2K2+ 1, η, M |η̂|2k2+ 1, η, M〉−o =

∣∣N ′−o ∣∣−2∑
s=0

(2s+ 2k2+ 1)

×∣∣BM
2s (2K2+ 1)

∣∣2 (7b)
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Similarly we can calculate the expectation value for the operatorn̂2 as follows,

(i) for evenk

〈n̂2〉o =
∣∣N−o ∣∣2 ∞∑

n=0

(2n+ 2k1+ 1)2
∣∣BM

2n+1(2k1)
∣∣2 (8a)

(ii) for odd k

〈n̂2〉o =
∣∣N ′−o ∣∣2 ∞∑

s=0

(2s+ 2k2+ 1)2
∣∣BM

2s (2k2+ 1)
∣∣2 (8b)

Finally the expectation values of the powers ofâ are given by,

(i) for evenk

−
0

〈
2k1, η, M |âm|2k1, η, M

〉−
0 =

∣∣N−o ∣∣2ηm(1− |η|2)M

×
∞∑

n=[m/2]

(M + 2n−m)!(2n+ 2K1+ 1)!

(M − 1)!(2n+ 1)!(2n−m+ 1)!

×
√

(M + 2n)!

(M + 2n−m)!
|η|2(2n−m+1) (9a)

(ii) for odd k

−
0

〈
2k2+ 1, η, M |âm|2k2+ 1, η, M

〉−
o =

∣∣N ′−o ∣∣2ηm(1− |η|2)M

×
∞∑

s=[m/2]

(M + 2s−m− 1)!(2s+ 2K2+ 1)!

(M − 1)!(2s)!(2s−m)!

×
√

(M + 2s− 1)!

(M + 2s−m− 1)!
|η|2(2s−m) (9b)

For the expectation values of (â†)m, we take the complex conjugate of the above
equations. It is clear that the expectation values of any odd power of the operators
â andâ† vanish. These results will enable us to discuss different statistical aspects
of the states under investigation.

3. NONCLASSICAL EFFECTS

In this section we use the results obtained in the previous section to discuss
the squeezing phenomena as well as the autocorrelation function.
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3.1. Quadrature Squeezing

Squeezing is one of the most important phenomena in quantum optics because
of its applications in various areas, e.g., in optics communication, gravitational
wave detection, quantum information theory, etc. (Braunstein and Kimble, 1998;
Hillery, 2000; Milburn and Braunstein, 1999; Ralph, 2000). Consequently the
analysis of squeezing phenomenon in quantum optical systems is an important
topic.

Here we analyse the quadrature squeezing for the OENBS. To do so, let us
define the quadrature operatorsX̂ andŶ as follows,

X̂1 = 1√
2

(â+ â†) and Ŷ1 = 1√
2i

(â− â†) (10)

and their variances,

Var(X̂1) = 〈X̂2
1

〉− 〈X̂1〉2 and Var(̂Y1) = 〈Ŷ2
1

〉− 〈Ŷ1〉2 (11)

obey Heisenberg’s uncertainty relation,

Var(X̂1)Var(Ŷ1)
1

4
(12)

If either Var(X̂1) or Var(Ŷ1) is less than 1/2, squeezing occurs. Thus, the variances
of X̂1 andŶ1 can be written as,

Var(X̂1) = 1

2
+ (〈â†â〉 + 〈â2〉 − 2〈â〉2) or Var(Ŷ1) = 1

2
+ (〈â†â〉 − 〈â2〉)

(13)
Using Eqs. (7), (9), and (13) we can investigate the squeezing properties. From
Eq. (13) it is apparent that squeezing does not occur in the quadratureX̂1 since
〈â〉=0.

Figure 1 depicts plots ofV(Ŷ1)=Var(Ŷ1)− 1/2 againstη for differentM and
k. As can be seen, the variance is insensitive toM when|η| is large enough, and
there also exists a critical pointηc. Whenη > ηc squeezing exists, and the value
of ηc increases asM increases. Ask increases, keepingM fixed the squeezing
parametersV(Ŷ1) starts at higher values and the squeezing range becomes narrow,
as the value ofηc moves to higher values close to 1.

3.2. Amplitude Squared Squeezing (ASS)

Here we discuss another nonclassical effect, namely, the higher order squeez-
ing. This type of squeezing is known as amplitude squared squeezing (ASS) that
has been introduced by Hillery (1989). ASS arises in a natural way in a second-
harmonic generation. In order to examine whether or not the OENBS exhibit ASS
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Fig. 1. (a) Quadrature variance against the parameterη for different values ofM (k = 4);
(b) quadrature variance against the parameterη for different values ofk (M = 7).
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we introduce the following hermitian operators:

X̂2 = 1

2
(â2+ â†2) and Ŷ2 = 1

2i
(â2− â†2) (14)

then X̂2 andŶ2 obey the uncertainty relation,(
1X̂2

2

)(
1Ŷ2

2

)1

4
|〈[ X̂2, Ŷ2]〉|2 (15)

where the variance,(
1X̂2

2

) = 〈X̂2
2

〉− 〈X̂2〉2 and
(
1Ŷ2

2

) = 〈Ŷ2
2

〉− 〈Ŷ2〉2

The field is said to be in an amplitude-squared squeezing state if,(
1X̂2

2

)
or

(
1Ŷ2

2

)
<

1

2
|〈[ X̂2, Ŷ2]〉| (16)

The squeezing conditions in (16) can be reduced to the following forms:

S1 = 〈â†4〉 + 〈â†2â2〉 − 〈â2〉 < 0

or

S2 = 〈â†4〉 − 〈â†2â2〉 < 0 (17)

Combining Eqs. (8), (9), and (17) we can study the squeezing effects of OENBS.
Figure 2 is the plot ofS2 againstη for differentM andk. As seen in Fig. 2(a)

and (b) the ASS is sensitive toM andk. When keepingM constant and varyingk,
we see that the states with higherk show stronger ASS than those with lower values
of k. However, squeezing appears after a certain value ofη. The same behavior
is exhibited when we fixk and varyM . Stronger ASS can be observed for higher
values ofM .

3.3. Sub-Poissonian Behavior

We turn our attention now to the Glauber second-order zero-time autocorre-
lation functiong(2)(0) which is defined as,

g(2)(0)= 〈â
†2â2〉
〈â†â〉2 +

〈n̂2〉 − 〈n̂〉
〈n̂2〉 (18)

This quantity measures the deviation from the Poisson distribution that corresponds
to the coherent state withg(2)(0)= 1. If g(2)(0)< 1(>1), the field is called sub
(super)-Poissonian.

From Eqs. (7), (9), and (18) we can calculateg(2)(0). Figure 3 shows a
plot of g(2)(0) againstη for different M and k. It can be seen that whateverk
or M in the OENBS, these states start sub-Poissonian forη= 0 with the value
1− 1/k′, wherek′ is the first odd numberk, theng(2)(0) increases and becomes
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Fig. 2. (a) Amplitude-squared squeezing for different values ofk (M = 3); (b) amplitude-squared
squeezing for different values ofM (k = 1).
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Fig. 3. (a)g(2) Parameter as a function ofη for different values ofk (M = 11); (b)g(2) parameter as
a function ofη for different values ofM (k = 3); (c)g(2) Parameter as a function ofη for different
of k (M = 7).
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Fig. 3. (Continued.)

super-Poissonian asη takes certain value depending onM and k as shown in
Fig. 3(a)–(c).

4. QUASI-PROBABILITY FUNCTIONS

In the following we shall examine the representation of OENBS by the
quasi-probability phase space distribution functions. All of these are related to
the density matrix, which provides a complete statistical description of the sys-
tem. There are three types of the quasi-probability functions: Wigner W-, Glauber
P-, and Husimi Q-functions. These functions could be used also to describe the
nonclassical effects of the system: for example one can employ the negative val-
ues of the W-function, the stretching of the Q-function and the high singular-
ities in the P-function as signatures of nonclassical effects. Furthermore, these
functions are now accessible to measurements (Leohardt, 1997). Here, we shall
consider only the W- and Q-functions. For finding the Wigner function in case
of OENBS we consider only the diagonal terms in its representation. We find
that,
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(i) For evenk

W(α) = − 2

π

∣∣N−o ∣∣2 e−2|α|2
∞∑

n=0

∣∣BM
2n+1(2k1)

∣∣2L2n+2k1+1(4|α|2) (19a)

(ii) For oddk

W(α) = − 2

π

∣∣N ′−o ∣∣2 e−2|α|2
∞∑

s=0

|BM
2s (2k2+ 1)|2L2s+2k2+1(4|α|2) (19b)

whereα= x+ iy andLr (z) represents the Laguerre polynomial of orderr defined
by,

Lr (z) =
r∑

i=0

(−1)i
(r )!zi

(i !)2(r − i )!
(20)

As it can be seen from the definition (19) the functionW(α) takes negative values
for α= 0.

On the other hand, the Q-function is positive definite at any point in the phase
space for any quantum state and can be written as,

Q(α) = π−1〈α|ρ̂|α〉 (21)

In order to find the Q-function, we shall use the definition for the coherent
state|α〉 in the form,

|α〉 = exp

(
−1

2
|α|2

) ∞∑
l=0

αl

√
l !
|l 〉 (22)

and the density matrix has the form,

(i) For evenk

ρ̂o = |2k1, η, M〉−o −o〈2k1, η, M |
(ii) For oddk

ρ̂o = |2k2+ 1, η, M〉−o −o〈2k2+ 1, η, M |
Thus the Q-function is found to have the following expressions,

(i) For evenk

Qo(α) =
∣∣N−o ∣∣2
π

e−|α|
2|C1|2 (23a)

where

C1 =
∞∑

n=0

BM
2n+1(2k1)

(|α|)2n+2k1+1

√
(2n+ 1)!
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(ii) For oddk

Qo(α) =
∣∣N ′−o ∣∣2
π

e−|α|
2|C2|2 (23b)

where

C2 =
∞∑

s=0

BM
2s (2k2+ 1)

(|α|)2s+2k2+1

√
(2s)!

In Fig. 4, the Wigner function of the OENBS is plotted by numerical calcula-
tion of Eq. (19) for different values ofM , k, andη. It can be seen that the negative
part of the Wigner function is quite pronounced especially at the origin. When
η is small (η= 0.1), M = 5 and changing ofk, we see that atk= 1, W(α) has
central peak with a crater-like structure around it, Fig. 4(a). Whenk starts to take
values larger than before, see Fig. 4(b) and (c), the central peak is surrounded by
wobbling circles due to the contribution of higher excitations. The existence of the
oscillations associated with the negative quasi-probability values, is a signature of
the nonclassical state. However, the widths of the oscillations are much broader
as compared to Fig. 4(a). Numerical calculations show thatW(α) is insensitive to
changes inM , However,W(α) is very sensitive to the choice ofk andη.

Fig. 4. (a) Wigner function forM = 5, k = 1, andη = 0.1; (b) wigner function for
M = 5, k = 4, andη = 0.1; (c) wigner function forM = 5, k = 2, andη = 0.6.
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Fig. 4. (Continued.)

With respect toQo(α) for OENBS, it is plotted for different values ofM ,
k, andη (see Fig. 5). Whenη is small (η= 0.1) the state|2, 0.1, M〉−o of the Q-
function is insensitive to changes inM [compare Fig. 5(a) and (b)] where the state
|3〉 is the most effective state and its contribution is the mainly effective one. Also,
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Fig. 5. (a) Q-function forM = 5, k = 2, andη = 0.1; (b) Q-function for
M = 11,k = 2, andη = 0.1; (c) Q-function forM = 5, k = 0, andη = 0.9;
(d) Q-function forM = 5, k = 2, andη = 0.9.

we find the center-crater-like spreads out in the phase space asη increases. When
η increases (η= 0.9) andM = 5 more states come to affect the Q-function, which
means that its diameter increases as the number of states increases (see Fig. 5(c)
and (d). The shape of the function is sensitive to any change in eitherk or η as
shown in Fig. 5.
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Fig. 5. (Continued.)

5. PHASE PROPERTIES

In fact, there are different techniques for phase description (Lynch, 1995;
Tanaset al., 1996) based on a Hermitian quantum phase operator or associated
with quasi-probability distribution functions in a phase space. Here we use the
formalism of Barnett and Pegg that is based on defining the hermitian phase oper-
ator in a finite dimensional phase space (Barnett and Pegg, 1986, 1989a,b). They
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defined in this space the phase operator as the projection operator on the particular
phase state multiplied by the corresponding value of the phase. The main idea
in their technique is to evaluate all expectation values of physical variables in a
finite-dimensional Hilbert space and then taking the limit to obtain the measured
quantities.

In this approach, in the (s+ 1) dimensional subspace, one can choose the
following (s+ 1) orthonormal phase states as bases,

|θm〉 = 1√
s+ 1

s∑
n=0

exp(inθm)|n〉 (24)

where|n〉 are the number states andθm is given by,

θm = θ0+ 2πm

s+ 1
; m= 0, 1,. . . , s (25)

the value ofθ0 is arbitrary, and is taken here to be zero.
The Hermitian phase operator is then defined by,

8̂θ =
s∑

m=0

θm|θm〉〈θm| (26)

which has the eigenstate|θm〉 as its eigenstate with the eigenvalueθm. The state of
the form,

|b〉 =
s∑

n=0

bn einχ |n〉 (27)

is known as a partial phase state (Pegg and Barnett, 1988, 1989), wherebn are real
and positive, andχ is a phase.

The phase probability distribution for the partial phase state is given by,

P(θm) = |〈θm|b〉|2 (28)

Since the density of phase state is (s+ 1)/2π , then the limits→∞ is taken and
the continuous-phase probability distribution is introduced by,

P(θ ) = lim
s→∞

s+ 1

2π
|〈θm|b〉|2 (29)

We obtain from (27) and (29) the Pegg–Barnett phase probability distribution for
the partial coherent state (27) in the form,

P(θ ) = 1

2π

(
1+ 2

∑
n>m

bmbn cos[(n−m)θ ]

)
, −π ≤ θ ≤ π (30)

In case of OENBS, the functionP(θ ) has the following form,

(i) For evenk

P(θ ) = 1

2π

(
1+ 2

∑
2n+1> 2m+1

b2m+1b2n+1 cos[(2n− 2m)θ ]

)
(31a)
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(ii) For oddk

P(θ ) = 1

2π

(
1+ 2

∑
2s>2s′

b2s′b2s cos[(2s− 2s′)θ ]

)
(31b)

Sinceb2n+1= BM
2n+1(2k1) andb2s= BM

2s (2k2+ 1) are given from Eq. (4).
In Fig. 6 we have plotted the phase distribution of OENBS given by (31)

against the parameterη for different values ofM and k. From Fig. 6 one can

Fig. 6. (a) Phase probability atM = 5 andk = 1; (b) phase probability
at M = 9 andk = 2.
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observe that, the distribution initially approaches the value 1/2π asη→ 0. This
means that in this limit the phase information is lost. Asη increases, we can
observe a central peak atθ = 0 and two lateral wings atθ→±π developing. In
fact, this behavior has been seen for odd binomial states (El-Oranyet al., 1999).
Also we note that the peaks are stretching alongη-axis, and have maximum values
at 0< η < 1 due to the nature of photon distribution in the state.

6. CONCLUSION

In this paper we have investigated some quantum statistical properties of a new
quantum state. This state is called odd excited negative binomial state (this state
interpolates between the odd number state and the odd excited coherent state).
The squeezing properties have been studied in detail, and it is found that there
exist critical point for the parameterη, for which the squeezing is exhibited as
η > ηc. Glauber second-order correlation functiong(2)(0) has been discussed. The
distribution starts atη= 0 sub-Poissonian whatever the value ofM andk. Later as
η increases the distribution changes from sub-Poissonian to super-Poissonian. We
have also discussed the quasi-probability function W-function, and Q-function.
Nonclassical effects have been observed for careful choice of the parameters. A
negative value for the Wigner function is a signature for nonclassical effects of the
state. Also the shape of W- and Q-functions are very sensitive to any change in
eitherk or η. Finally the phase distribution function in the sense of Pegg–Barnett
has been calculated and investigated. The phase distribution has one central peak
at θ = 0 and two lateral wings atθ→±π for 0< η < 1. This behavior has been
exhibited for earlier studies.
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